AD-A236 121

Coarnege Medon Useverst
Software Engmeerlng Institute

Lo b
it
'tlJ '
il
| ’AI
‘l‘!

Support Materials for

Formal Specification of Software

Support Materials SEI-SM-8-1.0 D T i C
SLUOTE ey

AN

91-0092
MMHWWWNWWWW

91 5 31 002

Support Materials
for

Formal Specification of Software

SEI Support Materials SEI-SM-8-1.0
October 1987

. F Y7) di:ﬂ. 30*_ 0;‘» "y;)-‘;
Edited by Al nnael A

LT Y

D KL T oY E} 5

Alfs Berztiss R —
University of Pittsburgh T : .
, | By R :

pict ini/ 3

Avnil bllity Codes]

fAvaiiAn:i]dr
Specinl

__;aé“__ Carnegie Meilon University
== Software Engineering Institute

This work was sponsored by the U.S. Department of Defense.

Draft For Public Review

This technical report was prepared for the

SEI! Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. it is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

1 o

JOHN S. HERMAN, Capt, USAF
‘// SE|I Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1987 uy Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U S. Government
agency personnel and their contractors. T2 ~btair a cony, please cont~ct PTIC dicectly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Contents

Examples of Predicative Specifications
The SF (Set-Function) Methodology

SF Specification: Boat Hire

SF Specification: A Library System

SF Specification: An Elevator Controller
The Specification Process

Formal Specification Courses

SEI-SM-8-1.0 Draft For Public Review

11
18
26
33
43
61

Formal Specification of Software

Support Materials Revision History

Version 1.0 (October 1987) Draft for public review

Support Materials Formal Specification of Software

Examples of Predicative Specifications

Alfs Berztiss
University of Pittsburgh

This section includes several annotated examples of specifications written in predicate calculus notation. Some
of the details are left as exercises to the reader.

SEI-SM-8-1.0 Draft For Public Review 1

EXAMPLES OF PREDICATIVE SPECIFICATIONS

SMALLER ENXAMPLES

The specification of a data transformer generally consists of twce predicates. One
describes the output independently of the input. the other relates the output to the input.
For example, 1o specify sorting, we have to indicate both that the output is in fact sorted,

and that the output is a permutation of the input:

Input: X[1..n];
Output: X'[1..n];
Allop(N: XTIl S xli+1l11 €i <nl)

permutation(X, X').

Notation: for any associative and commutative operator op. Allop(op; set) indicales a distri-
butive application of the operator over set. For example, if S =15, 12, 14}, then Allup(+: §)
= 5+12+14 = 31. The expression in A given above is equivalent 10 Vi: 1 $i <n:
X'[i J$X'[i +1]. Often the set is defined by the use of a defining predicate: {s | P (s)}. read
as "the set of all elements s such that the predicate P is true for s." In our example the set
consists of all statements X [i] € X {i +1] such that 1 €/ <n. Note that Allop(V:

nullset) = false and that Allop(A: nullset) = true.

Suppose that we wanted a function that returned the gquotient ¢ and remainder r of
the division of the nonnegative integer x by the positive integer y. Here the two com-

ponents of the output are related to the input by the expression
(x=yxg+r) AN (0OSr <y)

Similarly we can specify a function that inverts a matrix A by relating its output B to A

and to the identity matrix /: AB =1

Another simple specification is that of the greatest common divisor. Here we define

divides (i : Cardinal ; x : Natural) = Allop(V;{i xg =x | 0Sg $x});
ged (g: Cardinal ; x .y : Natural) = divides (g . x) A\ divides (g . y)
A not(Allop (V, {divides (i, x) A divides (i .y) | g <i Smin(x.y)}).

A function can be defined in terms of ged:

fged (x .y : Natural) = getelemenz ({g | ged (g . x . y)}).
where getclement is a function that extracts an element from a set (here the set consists of a
single element, namely the greatest common divisor of x and y).

Instead of defining ged in terms of divides, we can specify it by means of three

axioms:

gcd(x.x.O)Z
ged(g.x.y)=ged(g.x+y.y):
ged (g . x.y)=ged(g.y.x).

In mathematical language. we have here a theory of the greatest common divisor. From

these axioms. together with the relation
x =y Xdiv(x.y) + rem(x,y).
can derive the predicative specification
¥y >0 — ged(g.x.y)=ged(g.y.rem(x,y))),

which can serve as a basis for an implementation of the gcd function.

A TEXT FORMATTER

The text formatter is one of the problems selected for study at the Fourth Interna-
tional Workshop on Software Specification and Design. Here the input is a string over the
alphabet CH, and this string is to be split into lines. The input consists of words separated

by sequences of break characters. namely sequences of blanks (BK) and linefeeds (LF). Let

) 3

BC = {BK. LF}. Then a word is a sequence of characters from SC = CH - BC such that the

character to the left of this sequence (il any) and the character 10 the right of the sequence
(if any) belong to BC. The first word of the input may be preceded by characters from BC,

and characters from BC may follow the last word of the input.

The output is to contain precisely the words of the input in precisely the order that
they have in the input. The length of an output line is not 10 exceed the value maapos. H
the input contains a word that consists of more than maxpos characters, then the entire out-
put is to be just the one single character BK. The first word of the output is not to be pre-
ceded by any characters from BC, and the last word is not 1o be followed by any such char-
acters. The objective is 10 minimize the number of output lines. This objective is achieved
if the output lines are built up in the order they have in the output, and for every line an
attempt is made to pack as much of the remaining input into this line as the line can take.
However, a specification is not 10 show bias toward a particular implementation. Therefore
the description of the output will be totally declarative. This is particularly imporiant

here because the number of significantly different reasonable implemenitations is quite large.

We denote a string by S(1)S(2)...S(N), where length(S) = N. Then let the input string
be B(1)B(2)...B(length(B)), and the output string C(1)C(2)...C(length(C)). There are two
parts lo the specification. The first part consists of predicates that we consider of
sufliciently general interest to be part of the data type of strings of words. The other part

consists of predicates specific to this application.

Three of our predicates belong 1o the data type of strings of words: word(S, i, j) is
true if the character sequence S(i)...S(j) defines a word: word number(S, k, i, j) is true if

S(i)...8(j) defines the kth word of S; word count(S, k) is true if S contains k words.

word (S: String : i, j: l.length(S)) =
i S
A (i #1) — member (S(i—1), BC)
N (j # length(S)) — member (S(j+1). BC)
A Allop (N {member (S(k), SC)1i Sk £j})

word “number (S: String . k.i. j:Cardinal) =
word (S.i. j)
N (k =1) — Allop{N; {member (S(z). BC)1 1<t <i })
A (k> 1) — Allop(V; {word number (S . k—1,u.v)/
Allop (N {member (S(¢). BC) 1v <t <i })

 member (u , Cardinal) \ member (\ ., Cardina!)});

word “count (S : Siring ; k : Cardinal) =
(k =0) — Allop(N\; {member (S(¢), BC) | 1<t Slength(S)})
A (k > 0) — Allop(V; {word number (S . k.u.v)A
Allop (N\: {member (S(¢). BC) ! v <t Slength(S)})
| member (u, Cardinal) \ member (v . Cardinal)}):

Let us examine the predicate word in some detail. The four conjuncts in its definition
establish. respectively. that limits i and j are properly related. that S(i)...S(j) either starts
at the left boundary of S or has a break character preceding it, that S(i)...S(j) either ends at
the right boundaryv of S or has a break character following it. and that no characters in
S(i)...S(j) are break characters. In the definition of word number the first conjunct identifies
the character sequence defineu by i and j as a word. Then it is asserted that all characters
preceding the first word are break characters. The sequence number of subsequent words is
established recursively: it is asserted that there exist character positions v and v that define
word k-1. and that all characters between the end of this word and word & are break char-

acters. The interpretation of the definition of word count is left as an exercise.

The next set of predicates relates 1o the application. Predicate agrees matches up the
output words with the input words. and predicate special case determines whether or not
the input contains any word that is too long. Predicates dreaks ok and lines ok relate to the
output: breaks ok establishes that there are no leading or trailing break characters. and that
there is precisely one break character between each pair of words; lines ok establishes the

proper placement of linefeeds.

agrees (B.C: String) =
Allop (V: {word “count (B . k) A word “count (C , k) M .
Allop (N |
Allop (V: {word "number (B .t ,i, j) N word "number (C.1.u.v) A
j=i =v—~u A
Allop(N {Bli+q)=Cl(u+qg) ! 0S¢ <j—il)
t subser ({i ., j.u.v}. Cardinal)})
| 187 Sk })
| member (k , Cardinal)});

breaks "ok (C : String) =
not(member (C (1), BC))
A noumember (C (lengti. (C }), BC))
A Allop (\; {member (C(j). BC) — not(member (C (j +1), BC))
| 1< <length(C)}):

lines "ok (C: String) =
Allop (AN {C (0)= LF | 1<i <length(C)}) — length (C)<maxpos
N Allop(N {C(i)=LF — .
(length (C)—i Smaxpos V Allop(V;{C(j)=LF |i <j Smaxpos +i +1})) A
Allop (V: {word (C . i +1. k) \ i <maxpos —k >maxpos N i >maxpos —
Allop(V:{C (¢)=LF N i —g—1S<maxpos A k —q >maxpos
I 1€ <i})
i <k Slength (C)HY)
! 1<i <length(C)}):

special "case (B: String) =
Allop (V:{iword (B .i. j) | (1Ki, j Slengtii(B)) N j—i Zmaxpos });

conversion ok (B ,C: String) =
special “case (B) — (length (C)=1A C(1)=BK)
A not(special “case (B)) — (agrees (B, C) N breaks "ok (C) A lines "ok (C)):

Predicate agrees asserts that strings B and C contain the same number of words. that
corresponding words in B and C contain the same number of characters, and that .

corresponding characters are equal.

The definition of lines ok is the most difficult tc interpret. If the output string C con-
tains no linefeeds. then it occupies just one line. and fengthitC may not exceed maxpus. If C
contains more than one line. then for every linefeed in C it has t¢ be estabhlished that the
end of the string or another lineleed is not too far away on the right. Further, if this is the
lirst Lineteed in C. then it has to be shown that the length of the substring between Ct1)
and the end of the first word that follows the lineteed exceeds ras pv viherwise the length

of this substring is measured {rom the preceding linefeed.

The specification of the text formatter was very difficult to write, and it is difficult to
interpret. Moreover. one has to be careful to make the specification complete. For example.
the assertion j—i =v —u in predicate agrees is a later addition. Without it the strings "This

man is my husband” and "This maniac is my husband” would be found 1c agree.

TWO-WAY MERGE

Consider input streams of records defined by the following kev sequences.

A5 7 312 57 32 17 19 27 18 43 15

B: 2 911 8 15 30 42 20 35

Runs from the input streams are merged to produce output runs. Thus (5.7) and (2.9.11)
vield (2.5.7.9.11): (3.12.57) and (8.15.30.42) vield (3.5.12.15.30.42.57): (32) and (20.35)
vield (20.32.35). The merged runs go alternatelv into cutput streams C and D. At this
point input stream B has been exhausted. but three runs still remain in stream A. The first

and third go into D. the second into C. The output streams are

C. 25 7 91120 32 35 18 43

D: 3 8 12 15 30 42 57 17 19 27 15

The two-way merge is defined in terms of the following predicates.

run(Ai: j)=Alop(N: i Alkl € Alk+1) 1 i Sk <j})
rNid>ji— Alil< Ali—1]
A j<n — Aljl< Alj+1]

runnumber (A . k.i,j)=run(A.i. j)
MNk=1—>i=1
Ak >1— Allop (V: {runnumber (A . k—1,u.i—=1) ! 1Su <i});

runcount (A . k) =(k =0)— null(A) A
(k > 0) — Allop(A\; {runnumber (A . k.u.n) | 1Su<n}):

In our example above. there should be three runs on C. However. if we apply predi-
cate runcount to C. we find that & is 2, i.e.. the runs (2.5.7.9.11) and (20.32.35) have
coalesced into a single run. This worsens matters to the extent that we need a complicated

separate predicate to define output "runs".

outrun (D . k.i.j)=
not(Alop (V: {runnumber (A .k X2, u,v) | v Ssize(A) AN u<Sv})) —
Allop (\V: {runnumber (B , k x2. s .t YA D[i..j}=B[s.t] 1t $size(B)A s <t })
A not(Allop (V: {runnumber (B, k X2. u,v) | v $size(B)Au<v})) —
Allop (V ; {runnumber (A . k X2, 5.t YA Dli.jl=Als.2] 1 t Ssize(A)N s <t)
N Allop (V; {runnumber (A , k X2, u,v) A runnumber (B .k X2,s.1)
lv<size(A)Au<Sv ANt Ssize(BYN s <t)) —
Allop (Vi {merge(Dli.j), Alu.v]. Bls.t]
l v Ssize(A)Nu<Sv ANt Ssize(B)AN s St }):

outok (D . k) = Allop(V: {outrun (D .k .i. j) 1 1 £i,j Ssize(D)}):

Analogous definitions can be written for C. The definition of predicate merge is left as
an exercise. The two-way merge itself may now be specified.
two “way merge(A.B.C.D)=

Allop (A {outok (C,i) | 1
A Allop (N {owtok (D, i) 1 1

i € div (max (fruncount (A), fruncount (B))+1, 2)})

<ig
£ i € div (max (fruncount (A), fruncount (B)). 2)}):

where

8

fruncount (A) = getelement ({k | runcount (A . k)}).

Sorting by the two-way merge is accomplished by applving the operation specified by
predicate two way merge first 1o A and B, then to C and D. then to 4 and B again. and so
forth until one of the output streams is empty. However. the predicative specification is

very complicated. and it may be worthwhile to try a different approach.

We propose a generator that delivers the next value of a data stream each time it is
invoked, and further propose that tags be associated with the values delivered by the gen-
erator. There are to be three tag values: N(ormal). H(old). and F(inished). The tag value is
H after the generator has delivered the last item of a run. unless this is the last item of the
entire input stream, in which case the value is F. Otherwise the value is N. Let us now
assume that the generator has state. Then the behavior of the generator can be described in

terms of state transitions.

N Stay in state N, or change to H or F. If new state is N\, advance 1o next item in input
stream.

H Change state to \, advance to next item in input stream.

F Stay in state F.

The permissible state transitions are shown in the diagram below. The node representing
state N is doubly circled because the generator starts in this state (unless the input stream

is empty. in which case it starts in state F).

-

The tag values make 11l easy to specify a program that accepts data from the two input
streams and moves these dala into the twe output streams. We assume that the input from .
the generator over 4 is in location Aval. and the input from the generator over B in Bval.

Each record is assumed (o contain a field kev.

Tag-action table for a two-way merge

AB Action

NN If Aval < Bval then output Aval and call generator over A, else output Bval and call
generator over B

NH Output Aval and call generator over A

NF Output Aval and call generator over A

HN Output Bval and call generator over B

HH Call generator over A and B: switch output streams

HF Call generator over A: switch output streams

FN Output Bval and call generalor over B .
FH Call generator over B: swilch outlput streams

FF HALT

The main point is that the definition of the generator and the tag-action table consti-
tute a full specification of the two-way merge. The specification is abstract in the sense that

it is independent of the nature of the input streams (files, linear arrays. instances of some

other structure). Moreover. the specification easily generalizes to a three-way or a four-
way merge. Only the table that specifies the merge needs to be changed (to one with 27 or
81 entries. respectively). This table translates immediately into a program composed of

nested case statements.

10

Support Materiais Formal Specification of Software

o The SF (Set-Function) Methodology

Alfs Berztiss
University of Pittsburgh

An overview of the set-function methodology is given. This should be read before the examples that follow in
this collection. The discussion includes advice about the construction of specifications as well as a description
of the properties of the resulting products.

SEI-SM-8-1.0 Draft For Public Review 11

THE SF (SET-FUNCTION) METHODOLOGY

A specification methodolegy for information-control svetems should have a sound
theoretical base. and 11 should be ¢ nsistent with the approaches used in the specification of
other software elements. The SF methodology has both these properties. It is based on sets
and functions, which are well understood mathematical concepts. Further, since the essence
of data abstraction in general is that data types are defined in terms of sets and functions.
SF is consistent with the general principles of data abstraction. Moreover. because an SF
data tvpe and the events associated with it define each other, the specification is self-
contained. The SF methodology has been used to write the specifications of quite a number
of software svstems. among others the IFIP Working Conference example. which can be
regarded as a standard benchmark. and a svstem for handling bank accounts. Note. how-
ever. that the IFIP Working Conference example was written while SF was still being

developed. and has the serious flaw of not being modularized.

An SF specification consists of one or more segments. Each segment has three com-

ponents:

® a schema definition,
® specifications of events,

® a responder that consists of transactions.

The schema definition identifies a set as being the primary set of interest for the seg-
ment, e.g.. a set of bank accounts or a set of library books or a set of persons. In addition to
the primary set there mayv be secondary sets, which for the most part merely provide a
range for a function. For example. in a case study discussed below, library books are
tagged with indicators of their subject matter. These indicators are defined as a secondary

set. The schema definition also defines a set of functions (finite maps). which, for the most

12

part. have the primary set of interest for their domain. Examples of functions for bank
accounts: balance in an account, overdraft limit. transactions for the curreni month (a set-
valued function). Scome functions have a null domain--they represent properties that per-
lain to the entire segment. Constant functions for the bank accounts: interest rate. number

of transactions for which the bank does not charge, the charge tor each excess transaction.

Some functions are defined functions. They can be defined 1n terms of cther functiuns.
For example. we could have a predicate referees such that referees(r, p) is true if referee r
has been assigned as a referee 10 paper p. Then the function refs of paper. which is to map
from the set of papers to the power set of the set of referees, i.e.. which is to return the set

of the referees of a paper. can be defined in terms of the predicate referees:
refs of paper (x) ={y : referees (v.x)}:
Functions that are not defined are called basic functions.

The specification of events consists of preconditions and postconditions. Preconditions
determine under what circumstances an event may take place. They serve as a check on the
feasibility of input values, and embody consistency criteria for the data base of the infor-
mation system. Postconditions are subdivided into setconditions, mapconditions. and
sigconditions. Setconditions and mapconditions indicate the changes that sets and maps
undergo in consequence of an event taking place. Sigconditions send signals to the

responder in the form of raised flags.

Our example of an event assigns a referee to a paper. The preconditions test that the
argument p does indeed belong to the set of submitted papers S. and that ref is an active
referee. The prefix R indicates that active has been defined in the segment whose primary
data set is R (i.e.. the set of referees); similarly for prefixes CO (conference organization)
and P (persons). The other preconditions test that the number of papers assigned to ref
does not exceed a limit, that ref does not belong to the same organization as any of the
authors of p. and that the number of referees for the paper does not exceed a limit. The

mapcondition adjusts predicate referees. Primed entities refer 1o values after the event,

13

such as the primed referees here. Note very carefully that posiconditions are assertions
rather than assignments. The cperational interpretation of a poesicondition: the minimal
modification of the data base that makes the assertion hold. The sigconditions set flags: flag
paper 10 ref is 10 initiate the actual sending out of the paper 1o the referee: flag ind refs

remains on as long as the limit on the number of referees has not been reached tor this
paper.

EVENT Assign referee to paper(p. ref);

PRECONDITIONS— member (p. S):
R. active (ref):
ref “paper “count (ref) < CO. ref “paper "limit ;
Allop (A {not(P. affiliation (ref)=P. affiliation (x)) |
member (x , authors (p)}
card (refs of “paper (p)) < CO. ref "number ;
MAPCONDITIONS— referees'(p.ref) = true;
SIGCONDITIONS— (paper “to ref (p.ref))ON:
card (refs “of “paper '(p))=CO. ref “number
— (find “refs (p))OFF,

ENDEVENT;

Let us now look again at defined functions. Defined functions have two purposes.
First. they may be required in the specification itself, as is refs of paper in the specification
of our event Assign’referee“to"paper. Second. every query can be regarded as no more than
a request for the evaluation of a function. We can anticipate some queries, and the answer
10 an anticipated query can be predefined: if it is the value of a basic function, nothing
needs to be done; otherwise a defined function that will provide an answer to the query is

introduced in the schema definition.

In the SF information base all persistent data objects belong to sets and maps. The
sets are arranged in hierarchies, and SF provides multiple inheritance. Multiple inheritance
can be of two kinds. First. an object of type X can inherit properties of both a type }" and

another type Z. Second. some objects of type X may inherit the properties of type }', while

14

other objects of type X may inherit properties of tvpe Z. In SF the first kind of inheritance
is handled by multiple application of the ISA, and the second by set partitioning and ISA.
Thus. for a boat hiring example to be discussed in detail further on. the dependencies

defined by

TYPE B (SUBSETS: R (SUBSETS: F. H.OD. M 1SA Maintenance object)
ISA Registered object. DR)
ISA Water vehicle ISA Hire object;

have the graphical representation: -

@ ¢ & 0

In this diagram ISA links are represented by solid lines; subset relationships by dashed
lines. The subset names R and DR are abbreviations for Registered and Deregistered.
respectively. Subset names M, OD, H, and F refer 1o boats that are in maintenance, over-

due (i.e., were not returned when expected), hired, and free for hire.

The usefulness of inheritance depends on how easy it is to create a new type from its

parent types. Suppose that the parent types have available functions f . f 5. ... f,. ... f4.
and the declaration of a new type 7 contains functions f;..... f;. fi+1. ... fo- Then type
T inherits functions f ;. f 5. f;. While functions f ;, f,_; may not be changed by

15

events in the segment of T functions f,. ... f; may be changed. but the changes are not
propagated back to the parent segments. \

The inability to make changes in a parent type is a speciai case of the general principle
that no SF event mayv directly change an object that does not belong to the segment in
which the event resides. Suppose that type B is the basis tvpe for a segment Boal hire.
Then no event in this s‘egmem. may change anything in an: other segment. su\ one that
deals with repair of boats. However, we may import types. and declare instances of the
imported type locally in th; importing type. Changes may then be brought about in the
locally declared instances. "For example. in an airline reservation system customers mayv
have 16 be put into waiting lines. The type of queue would be imported. It would provide

the operations, but the actual queues of customers would reside in the reservation system

as locally declared instances.

But changes can be brought about in other segments indirectly. This is by message
passing. An SF message (or flag) is a signal., which may be provided with arguments. A
signal. after it has been raised by an event. is picked up by a responder transaction. either in
the same segment. or, in case the signal is declared as exported. in another segment. A sig-
nal remains alive until it is explicitly turned off. A variant of signals consists of counters.
which may be incremented or decremented. A counter remains alive until its value drops
to zero. Signals also provide the means of communication between segments. Thus. seg-
ment A mayv request segment B to perform some action by raising a flag. This flag is
exported by segment A and imported by segment B. Segment B may inform segment A of
the completion of the action by an explicit second signal. or merely by turning off the flag.
The interleaving of events and transactions make SF processes equivalent to Petri nets, with
the manipulation of signals and counters corresponding to the movement of tokens in a

Petri net.

The responder processes signals immediately. at some specific time. e.g., 06:30 every
morning. or at set intervals. The responder initiates events on its own accord, prompts the

16

user Lo initiate events. or reminds the user that some action is to be performed. For exam-
ple. 1n a svstem that manages bank accounts. & withdrawai event may cause the account to
pecome orverdrawn. In such a case an overdraft signal is 1o be <sent 1o the responder. A
lransaclion in the responder now initiates an event lhat assesses a penally charge against the
account. and reminds the account manager to send out an overdrall notice 1o the customer.
N\ event mayv inttate another esent directiv--all such inttiations hirve 1o be carried out via
transactions. Events initiated by the responder are called internal events; all other events
are external. Internal events have no preconditions--all input data ass~ciated with such
events are assumed to have been already checked. Sometimes. however, the responder
establishes that external events are to be initiated. In such a case the responder issues
prompts to the user. For example. in the assigning of referees to a paper. the responder
prompts the user 1o initiate referee assignment events until the required number has been

reached. Reminders issued by transactions do not in general relate 1o events.

The separation of the action of sending out a message (i.e., raising a signal as part of
an event) from the definition of the ultimate effect of this message (in a responder, which
may reside in a different segment) has several pleasing features. First. the events can be
defined independently of the responder. and all decisions regarding the precise effect of a
message can be postponed. Second. because messages are not addressed. more than one tran-
saction can pick up a message. which adds to the flexibility of the entire svstem. Third. all
indications of the time dependence of the effect of a message belong to the definition of the
responder. i.e.. the specification of time-related aspects of the svstem is confined to

responders.

17

Formal Specification of Software

Support Materials

SF Specification: Boat Hire

Alfs Berztiss
University of Pittsburgh

A (relatively) simple problem is posed and solved in set-function notation.

18 Draft For Public Review

SEI-SM-8-1.0

SF SPECIFICATION: BOAT HIRE

Our first example of an Sl speciiication relates to an enterprise thuat hires out boats.
Hiring hcours are 9:00 t¢ 20000, and all boats must be back by 21:00 The <e: of nterest is
that of boats (B). which is partitioned into the subsets of registered (R) and deregistered
(DR) boats. The latter are no longer in use, i.e., have been scrapped. The set of registered
boats is partitioned intc free (F). hired (). overdue (OD). and "maintained” (M) boats.
The boats in set M are to be inspected. and the inspection indicates that they are free of
defects. 1o be repaired. or beyond repair. The labels in secondary set S code correspond 10
these possibilities. The majority of the events move boats from one of these subsets into
another. They are Hire (which moves a boat from subset F to subset H). Return (from H
to For to M): Mark o due (from H 1o OD. applied to all boats that ha\e not been returned
at some specified time after 21:00): Recover (from OD 1o M): Inspect (from F to M):

Maintenance check (from M to F): Reinstate (from M to F).

Event Buybuar brings a boatl into the enterprise: event Deregister boar takes il out.
The purpose of Needs analvsis is 10 update a parameter that indicates how many additional
boats the enterprise needs. Events Deregister boar. Mark o due. and Reinstate differ from
the others in that thev are initiated by the svstem itself. 1.e.. they are internal. Events may
have certain control functions. For example. when a boat is returned. and it had been hired
out for 200 hours or more since its last inspection, the sigcondition Check condition asks the
responder to initiale a maintenance inspection of the boat. Such an inspection is mandatory

when an overdue boati has been recovered.

We would like to answer rather complicated queries, such as "What is the total time
for which boat x has been hired this month?" The functions of the type B serve mostly
this purpose. For example. Latest hire indicates the lime at which the latest hiring event

took place for the given boatl. and H set returns a set of triples indicating for each regular

19

hiring event the date and time the event took place, as well as the length of the interval for

which the boat had been out.

These functions require the importation into the segment under consideration of
several predefined tvpes: 7 min. with function 7 now min that returns the current time
with a resolution of one minute. and in which comparisons are standard operations: Date.
again with comparisons. and the function D now that returns the current date: 7" dur min.
which consists of durations of time intervals measured in minutes, and in which subtrac-

tion of times. dates, or of pairs consisting of dates and times are standard operations.

Notation: In the specification of an event a primed quantity indicates a value after the
event, an unprimed quantity indicates a value before the event. X-set stands for the power
set of X. Let us also interpret the notation in the specification of the functionality of
H sigma. This is a defined function in the sense that it can be constructed from some other
function, namely H set here. The function Coord belongs to the basic 1vpe of maps--here it

extracts the third coordinate from each triple in the range of H set.

SEGMENT Boat hire:;
IMPORTED TYPE T min ENDTYPE;
IMPORTED TYPE Date ENDTYPE:
IMPORTED TYPE T dur min ENDTYPE:
TYPE B (SUBSETS: R (SUBSETS: F. H, QD. M ISA .Mainliznance-()bjecl). DR)
ISA Water vehicle 1SA Hire object:
SECONDARYSETS- S'code = {"ok", "repair”. "scrap”}:

FUNCTIONS~ Boat “in: B — Date ;
Latest "hire: R — T min;
Hset: R — (Date X T min X T “dur min)—set:
H sigma: R — T dur “min: H sigma(b) =
Allop (+. Coord (H “set (b). 3)):
H hist: B — (Date X T min X T dur min)—set:

OD “set : B — (Date X T "min)—set:

20

REC "set: B — (Date X T “min)—set;
INSP set: B — Date —set:
Inspeétion “code: M — S code:
Boat “shortage — Integer .

ENDTYPE;
EVENT Buy boat(boat):

PRECONDITIONS—
SETCONDITIONS-
MAPCONDITIONS—-

ENDEVENT;

not{ Member (boa: . B)):

F'=F J tboar };

Boat “in'(boat) = D “now ;

Boat “shortage ' = Boat “shortage — 1:

INTERNAL EVENT Deregisier boat(boat):

SETCONDITIONS—

MAPCONDITIONS-
ENDEVENT;

R'=R — |boat }:
DR’ = DR |J {boar }:

Boat “shortage’ = Boat “shortage + 1;

EVENT Needs analysis(k: Integer);

MAPCONDITIONS-
ENDEVENT:

EVENT Hire(boat):

PRECONDITIONS~

SETCONDITIONS—

MAPCONDITIONS—
ENDEVENT:;

EVENT Return(boat);

DEFINITIONS~
PRECONDITIONS—-
SETCONDITIONS~

Boat “shortage’ = Boat “shortage + k ;

Member (boat . F).

T "now “min < 20:00;

F'=F = lboat }:

H' =H | {boar }:

Latest "hire (boat) = T "now “min;

t "dur : T "now “min — Latest “hire (oat):
Member (boat . H):
H' =H —{boat };

21

MAPCONDITIONS—~
SIGCONDITIONS—
ENDEVENT:

H “sigma'(boat) 2 200:00 — M =M |J {boar }:

H “sigma'(boat) < 200:00 — F'=F |J {boar I;

H “set '(boar) = H "set (boat) J {<D now . Latest “hire (boar).t "dur >
H “sigma'(boat) 2 200:00 — (Check “condition (boat))ON;

INTERNAL EVENT Mark o due(boat);

SETCONDITIONS-

MAPCONDITIONS—
ENDEVENT:

EVENT Recover(boat);

PRECONDITIONS—-
SETCONDITIONS-

MAPCONDITIONS-

SIGCONDITIONS—-

ENDEVENT;

EVENT Inspect(boat):

PRECONDITIONS—
SETCONDITIONS-

SIGCONDITIONS—
ENDEVENT;

H' =H = {boat }:
oD'=0D | {boar):
OD “set '(boat) = OD “set (boar) |J { <D “now . Latest “hire (boat)>}:

Member (boat , OD).

OD ' =0D - {boat };

M =M | {boar };

REC “set '(boat) = REC “set (boar) |J { <D now .7 now ‘min>):
(Check “condition (boat))ON:

Member (boat , F);

F'=F —|boat };

M =M |J {boa };

(Check “condition (boar))ON:

EVENT Maintenance check(boat, status: S code):

SETCONDITIONS—

MAPCONDITIONS—

22

status ="ok" —
BLOCK M'=M — {boat }:
F'=F |J {boar }:
ENDBLOCK;
H "hist '(boat) = H "hist (boat) |J H “set (boat):
H “set '(boat) = Nullset :
INSP "set "(boat) = INSP "set (boat) |J {D “now }:

SIGCONDITIONS— starus ="repair” — { Repair “boat (boat))ON:
status ="scrap” — (Scrap “boat (boat MYON-
(Check “condition (boat))QFF;
ENDEVENT:;

INTERNAL EVENT Reinstarel boa:)

SETCONDITIONS— M =M —{boat l:
F'=F |J tboa }:
ENDEVENT;

TRANSACTION Maintenance;

@ (T "min"now): Forall (x): Member (x . M): ON(Check “condition (x))ON—
PROMPT(Maintenance “check : x)

ENDTRANSACTION.:

TRANSACTION O due check:
@ (21:15): Forall (x): Member (x , H): Mark "o "due (x);

ENDTRANSACTION;

TRANSACTION Check needs:
Member (D "now +1, EOM “dates) — PROMPT(Needs ~analvsis);

ENDTRANSACTION;

TRANSACTION Boat” purchase:
Member (D "now . EOM “dates) — PROMPT("Buv boat"): TIMES(Boar “shortage):

ENDTRANSACTION:

TRANSACTION Boa: repair;

(* This transaction is triggered by Repair boat; it signals some other segment-- the
actual repairs are undertaken in this other segment. and depend on availability
of resources: the flag Boat repaired of transaction Back in service is set by some
event in the other segment. *)

ENDTRANSACTION;

23

TRANSACTION Back "in”service: .
@ (T "min"now): Forall (x): Member (x , M): ON(Boat “repaired (x))OFF— Reinstate (x);

ENDTRANSACTION:

TRANSACTION Send out”searchers:
Forall (x). Member (x, OD): REMIND("Find boat™: x);

ENDTRANSACTION;

TRANSACTION Scrapping of boar:
Forall (x): Member (x . M): ON(Scrap “boat (x))OFF— Deregister “boat (x);

ENDTRANSACTION;

TRANSACTION Deregistrationtest;

Forall (x). Member (x.0D): D "now —

Allop (max. {y | y = Coord (OD “set (x). 1)}) > 7 — Deregister "boat (x); .
ENDTRANSACTION;
ENDSEGMENT;

Transactions are of two types. First. transactions that are 10 take place at a given
time are marked with the svmbol @. e.g.. @(21:15), @(7 now min) In our example one
marked transaction is to take place at 21:15. at which time the event Mark o due is to be
initiated for all hired boats that are still out. Unmarked transactions are performed
according 1o a fixed schedule, which is once a da_\; in our case. E.g.. for each overdue boat. a
reminder is issued that this boat is to be looked for. As another part of this daily procedure
the current date is compared against end-of-month dates (in set EOM dates. which belongs
to type Date). i nd transactions Boat purchase and Check needs are initiated on an end-of-
month date or the day preceding it, respectively. Typically. a transaction initiates an event,
issues a reminder, or issues a prompt. Reminders do not in general relate 1o events. On the .
other hand, prompts ask the user to initiate events. These events are not external. but the

24

system cannot initiate them on its own. For example. the purpose of event
Maintenance check is 10 determine what is 10 be done to a boat on the basis of the value of

status. However. the user has tc supply this value.

25

Formal Specification of Software Support Materials

SF Specification: A Library System

Alfs Berztiss
University of Pittsburgh

One of the problems from the Fourth International Workshop on Software Specification and Design is described
and solved in set-function notation. (Problems from this workshop appear often in the literature—instructors are
encouraged to look for comparative examples in other notations.)

26 Draft For Public Review SEI-SM-8-1.0

SF SPECIFICATION: A LIBRARY SYSTEM

The librarv svstem is another of the problems selected for study at the Fourth Inter-
national Workshop on Software Specification and design. A basic requirement is that the
library is to provide for multiple copies of particular titles. This means that a distinction
has to be maintained throughout between titles of books and copies of books. We shall use
the term book only when this term could indicate either a title or a copy. An informal

statement of additional requirements and constraints on the system:

] copies are added to the library and are removed;

o copies are checked out and returned by borrowers;

° every copy is either in the library or else it is checked out 10 a borrower:

) no more than a predefined number of copies may be checked out 1o a borrower.
The system is to have these minimal query-answering capabilities:

o listing of books by a particular author or in a particular subject area:

] listing of copies that are checked out to a given borrower (restricted to library staff

except that borrowers may find out what copies they themselves have borrowed):

o indication of the name of the borrower who last checked out a particular copy (res-

tricted to library staff).

The distinction between titles and copies indicates the need for at least two segments
in the system. The segment for titles then relates to information that is common to all
copies of a particular book. such as the author or authors and the subject areas of the book.
Addition or removal of copies can have an impact on the titles segment. Thus. when the
very first copy of a particular title arrives at the library, appropriate information has 1o be

added in this segment. Again. when the last copy of a title is removed. the information

27

regarding this title is not deleted, but is archived. The archiving is implemented by the par-
titioning of the set of titles into subsets INCAT and HASBEEN, and moving the title from
INCAT into HASBEEN. Should a new copy of the book become again part of the library

holdings. then the title is restored to JNCAT.

The primary event is the addition of a copy to the library,. but this event requires that
the title be already registered in the titles segment. Consequently the addition of a first
copy is somewhat circuitous: the copies segment signals the titles segment that a new title is
to be added:; after the title has been added. a signal goes back to the copies segment to ini-

tiate addition of the copy: the copy is finally added to the catalog.

SEGMENT Titles:
IMPORTED SIGNALS Add title, Drop title, Move title;
EXPORTED SIGNALS Catalog copy:
IMPORTED TYPE Awthor ENDTYPE;
(* Some types. such as Integer, Boolean, and Text are assumed to be universally
available. The form Subject area: Area used below indicates that Area is an
abbreviation of Subject area. *)

TYPE Title: T (SUBSETS: INCAT, HASBEEN);

SECONDARY SETS- Subject area: Area;

FUNCTIONS—- title text: T — Text;
authors : T — Author —set;
sub jects : T -— Area —set;

ENDTYPE;

EVENT Add title(newcopy:; book; t: Text; A: Author-set; S: Area-set);

(* The types of arguments ¢. A and S are known, and are indicated in the list of
arguments; book has not yet been added to set T, i.e., it has no type; newcopy
is an argument that is being passed through from the copies segment back to
the copies segment, where it will become part of the set C. *)

PRECONDITIONS— not(member (book . T));
SETCONDITIONS— INCAT' = INCAT U {book };

28

MAPCONDITIONS— title “text '(book) =t .
authors '(book) = A ;
sub jects '(book) = S ;
SIGCONDITIONS— (Catalog “copy (newcopy . book))ON;
ENDEVENT:

INTERNAL EVENT Reactivate(newcopy. book):

SETCONDITIONS— INCAT' = INCAT |J lbook }:
HASBEEN' = HASBEEN — {book }.
SIGCONDITIONS— (Caralog “copy (newcopy . book))ON;
ENDEVENT:;

INTERNAL EVENT Drop title(book);

SETCONDITIONS— INCAT' = INCAT — {book };
HASBEEN' = HASBEEN | {book }:
ENDEVENT:;
TRANSACTION:

@ (T "min . now): ON(Add “title (newcopy . book))OFF:
PROMPT(Add “title : newcopy . book).

ENDTRANSACTION;

TRANSACTION;
@ (T “min . now): ON(Drop “title (book))OFF: Drop “title (book).

ENDTRANSACTION:

TRANSACTION;
@ (T "min . now): ON(Move “title (newcopy . book))OFF: Reactivate (newcopy , book);

ENDTRANSACTION;

ENDSEGMENT;

29

SEGMENT Copies:
IMPORTED SIGNALS Catalog"copy: (* This signal may also be set locally. *)
EXPORTED SIGNAL Drop title. Move title, Add title:;
IMPORTED TYPE Title: T ENDTYPE;
IMPORTED TYPE Borrower: B ENDTYPE:
TYPE Copy: C:
(* Values in parentheses are starting values. *)

FUNCTIONS—- book ~id : C —>T,;
borrowed: C — Boolean (false):
last"out: C — B(nil);
books out: B — Integer (0);
limit : — Integer (0);
ENDTYPE;

EVENT Setlimit(k: Integer);

MAPCONDITIONS—~ limit' =k ;
ENDEVENT;

EVENT Check copy(newcopy, book):

SIGCONDITIONS— member (book , INCAT) — (Catalog "copy (newcopy . book))ON:
member (book . HASBEEN) — (Move “title (newcopy . book))ON:
not(member (book , T)) — (Add “title (newcopy . book))ON;

ENDEVENT:;

INTERNAL EVENT Add copy(newcopy. book);

SETCONDITIONS— C'=C |J {newcopy)
MAPCONDITIONS— book “id '(newcopy) = book ;
ENDEVENT;

EVENT Remove copy(copy):

PRECONDITIONS— member (copy , C);
not(borrowed (copy));

30

SETCONDITIONS— C'=C — {copy }:
SIGCONDITIONS—- card ({x | book ~id '(x) = book "id (copy)}) = 0
—> (Drop “title (book “id (copy)))ON;
ENDEVENT;

EVENT Check out(copy. borr: B);

PRECONDITIONS— member (copy . C):
not(borrowed (copy)):
books “out (borr) < limit ;
MAPCONDITIONS— borrowed '(copy) = true;
last “out (copy) = borr :
books “out '(borr) = books “out (borr) + 1;

ENDEVENT;

EVENT Check in(copy, borr: B);

PRECONDITIONS— member (copy . C);
last “out (copy) = borr ;
MAPCONDITIONS— borrowed '(copy) = false;
books ~out '(borr) = books “out (borr) — 1;
ENDEVENT:
TRANSACTION;

@ (T "min . now): ON(Catalog “copy (newcopy , book))OFF: Add “copy (newcopy . book);

ENDTRANSACTION;

ENDSEGMENT:

The answers to queries are simply values of functions for given arguments. Thus
last”out(copy) returns the last borrower of a copy. However, to determine the set of books

checked out to borrower x, we need a defined function

out set: B — C—set: out set(x)=

[y | last “out (_y) =x A borrowed (_\ .

Note now that function out set makes the explicit map books our redundant:

31

books out: B — Integer: books out (x) = card (out "set (x)).

Queries regarding books by subject matter or by author can be given several interpre-
lations. Under one interpretation the answer should be a listing of titles, irrespective of
whether any copies of a particular title are indeed currently in the library. Under a second
interpretation all currently available copies should be listed. Actually the most useful
response seems Lo be a listing of all titles of which at least one copy is currently available:
titles by “topic: Area — T —set:

titles “by “topic (x) = |y | member (x , sub jects (y)) A member (y . INCAT) \
Allop (V: { nou(borrowed (z))! book "id (z) =y }}.

The definition of titles by author is analogous.

Let us now consider authorization. Evaluation of functions titles by topic and
titles by author can be requested by everyone. However, evaluation of books out(x) can be
requested only by a librarian or by borrower x. This restriction takes care of itself if the
identifiers of borrowers are known only to borrowers themselves and to the library staff,

i.e.. one must know x 10 access books out(x). Only librarians may initiate events.

32

Support Materials Formal Specification of Software

® SF Specification: An Elevator Controller

Alfs Berztiss
University of Pittsburgh

This is another example from the Fourth International Workshop on Software Specification and Design, also
solved in set-function notation. This problem is more complicated than the library problem.

SEI-SM-8-1.0 Draft For Public Review 33

SF SPECIFICATION: AN ELEVATOR CONTROLLER

The elevator controller is the third problem selected for study at the Fourth Interna-
tional Workshop on Software Specification and design. Here the specification is to indicate
the responses of a system to user requests. Each elevator has a set of buttons, one for each
floor. They light up when pressed, and the elevator is then to visit the indicated floor. The
light goes off when the elevator halts at this floor. The lit-up buttons define an agenda for
the elevator. No floor can be added to the agenda that is not in the current direction of
travel. All lights go off when a sensor determines that the elevator is empty. An elevator

with an empty agenda is in an idle state.

Floors have outside buttons. to request up- or down-elevators. An outside button also
lights up when pressed. and the light goes off when an elevator going in the appropriate

direction visits this floor. The system should give equal prioritv to each outside request.

Each elevator has a stop button. Pushing in of this bution causes the elevator to go
out of service if it is at a floor, or to go out of service after reaching the next floor if it is

between floors. The stop is terminated by pulling out the stop button.

We propose two segments. Elevator and Dispatcher. Suppose the system consists of &
elevators. The elevator segment is to specify the operation of one such elevator in terms of
the agenda. At implementation time k processes will be instantiated from this specification.
The dispatcher segment is to look after the servicing of outside requests. The dispatcher
would add floors to the agendas of the individual elevators, and send idle elevators to hold-
ing floors in order to provide efficient service. The dispaicher operation would be deter-
mined by a complicated scheduling algorithm. but the development of algorithms is a func-
tion of design rather than of specification. In other words. the purpose of specification is to

indicate what a system is to accomplish, not how it is to do this. Consequently we can

34

define Elevator fully. but as regards Dispatcher. can do no more than pass through to the

design stage the requirement that the svstem of elevators be fair.

TN TN
{ dstop lupstop;
» /

The states of an elevator

The operation of an elevator can be looked at as transition between states, as shown in
the figure above. When the elevator is in motion, it is either in an up or in a down state.
When it halts at a floor. there is a transition to an uphalt or a dhalt state. respectivelyv.
From a halt state it can resume motion. become idle. or be stopped. The elevator can also be
stopped. i.e.. taken out of action, when it is in motion. There are two stop states, upstop
and dstop, because there are two possible states of motion that the elevator can atiain on
resuming motion after passing into a halt state from a stop state. The elevator is taken out

of the idle state by the dispatcher.

Actually the dispatcher can influence the operation of an elevator in three ways: an
idle elevator may be moved to a particular floor: an idle elevator may be brought out of the
idle state: an elevator in the up or down state or in one of the halt states may have a floor

added to its agenda. The respective signals are Move idle. Activate elevator. Add to agenda.

35

Another way of looking at the actions of an elevator is in terms of sequences of
events. Such sequences can be regarded as processes. The mechanism for defining a process
is provided by SF signals, e.g.. event A sets flag F, and a responder transaction initiates
event B on account of flag F having been set. Such interleaving of events and transactions
suggests the use of Petri nets to model the sequencing of events. This will be discussed

further on.

The methodology used in the specification of the elevator differs in some ways from
that used in the specification of the library system. One difference is that we introduce a
special class of functions that we call sensors. They are actually devices that supply a
value on demand. One sensor (nullweight) indicates whether the elevator is empty; another
(floor 'now) indicates the floor at which the elevator is currently located. There is also the
Next floor sensor, which is a signal that is set whenever the elevator passes a special sensor
in its travel between any two floors. This signal initiates an event (Passing sensor) that

determines whether the elevator is 1o continue in motion or is to halt at the next floor.

Continuation of motion or halting is regulated by two signals that enable segment
Elevator 1o communicate with the mechanical controls of the elevator. namely the signals
Motion up and Motion"down. Very similar is the signal Door open: it causes the elevator
door to open when it is on. and the elevator door to close when it is off. The elevator is
stopped by means of event Stop elevator, which is initiated by the pressing of a stop-button
inside the elevator. This event causes an alarm to sound (by means of the signal Alarm).
The reciprocal event Reactivate elevator stops the alarm. There are also signals to control
the illumination of floor indicators: Light. one for each floor selection button within the
elevator, and Uplight and Dlight. which are two buttons by which elevator service for going
up or going down can be requested from the outside (of course the bottom and top floors

have just a single button). We refer to these signals collectively as mechanisms.

36

.EGMENT Elevator:

IMPORTED SIGNALS Activate elevator, Add"to"agenda. Move idle:

SENSOR SIGNALS Next floor sensor;

MECHANISMS Door open. Alarm, Light, Uplight, Dlight. Motion"up. Motion”down:

IMPORTED TYPE Time: T ENDTYPE:

IMPORTED TYPE Time interval: TI ENDTYPE;

TYPE Elevator: E:

SECONDARY SETS— S
Floor : F

FUNCTIONS- state :
lowfloor :

highfloor :

clock :

delay :

’ agenda

SENSORS— floor "now :
nullweight :

ENDTYPE;

= {"idle", "up". "uphalt”. "upstop”, "down”, "dhalt", "dstop"};
= Integer ;
E—S;
E—F;
E—>F;
E—>T;
E—TI;
© EXF — Boolean (false):
E—F;

E — Boolean :

EVENT [Initialize elevator(e: low, high: F: interval: TI);

(* Parameter interval indicates the time for which the elevator door is to be kept
open after it was last opened or a person stepped through it. ¥)

MAPCONDITIONS—

ENDEVENT:;

state '(e) = "idle";
lowfloor ‘(e) = low ;
highfloor '(e) = high .
delay '(e) = interval ;

INTERNAL EVENT Activate elevator(e; x: S):

(* Initiated by the dispatcher via signal Activate elevazor. *)

. MAPCONDITIONS~

state'(e) = x ;

clock ‘(e) = T.now :

37

SIGCONDITIONS—~

ENDEVENT;

(Door “open JON;

x = "uphalt" — (Uplight (floor "now (e)))OFF:
x = "dhalt" — (Dlight (floor "now (e)))OFF;
(Process "halt (e))ON;

INTERNAL EVENT Enter halt(e);

MAPCONDITIONS—

SIGCONDITIONS—

ENDEVENT;

agenda ‘(e , floor now (e)) = false:
not(nullweight (e)) — clock ‘(e) = T.now ;
not(nullweight (e)) —
BLOCK
(Door “open (e))ON;
state (e) = "uphalt" — (Uplight (floor "now (e)))OFF:
state (e) = "dhalt" — (Dlight (floor “now (e)))OFF;
(Light (e, floor “now (e)))OFF;
(Process "halt (e))JON:
ENDBLOCK;
nullweight (e) — (Idle "elevator (e))ON:

EVENT Press button(e; floor: F),

(* Only floors in the direction of travel of the elevator may be added 10 the

agenda. *)

PRECONDITIONS—

MAPCONDITIONS—
SIGCONDITIONS—
ENDEVENT:

state (e) = "up" V state (e) = "uphalt" — floor > floor 'now (e):
state (e) = "down" V state (e) = "dhalt" — floor < floor "now (e):
not(member (state (e). {"idle", "upstop”. "dstop"})):

agenda ‘(e . floor) = true:

(Light (e , floor))ON;

INTERNAL EVENT Add to agendale; floor: F):

(* Initiated by the dispatcher. *)

MAPCONDITIONS—
ENDEVENT:

38

agenda ‘(e ., floor) = true:

INTERNAL EVENT Process halt(e):

SIGCONDITIONS—

ENDEVENT;

Allop (\; {not(agenda (e . x)| lowfloor (e)Sx Shighfloor (e)}) —
(I1dle "elevator (e))ON;

Allop (V: {agenda (e . x)| lowfloor (e)Sx Shighfloor (e)}) —
(Set “in"motion (e))ON:

INTERNAL EVENT Set"in motion(e);

MAPCONDITIONS—-

SIGCONDITIONS—

ENDEVENT;

state (e) = "uphalt” — szare'(e) = "up”;
state (e) = "dhalt” — state '(e) = "down";
(Door “open (e))OFF:

state (e) = "uphalt” — (Motion "up(e))ON;
state (e) = "dhalt" — (Motion "down(e))ON;

INTERNAL EVENT Passing sensor(e);

MAPCONDITIONS—

SIGCONDITIONS—

ENDEVENT;

EVENT Stop elevator(e);

MAPCONDITIONS—

SIGCONDITIONS—

ENDEVENT;

agenda (e , floor "now (e)+1) — siate ‘(e) = "uphalt™:

agenda (e, floor 'now (e)—1) — state (e) = "dhalt™:

agenda (e, floor "now (e)+1) — (Motion “up(e))OFF:

agenda (e , floor "now (e)=1) — (Motion "down(e))OFF:;
agenda (e, floor "now (e)+1) V agenda (e, floor “now (e)—1) —

(Enter "halt (e))ON;

state (e) = "down" V state (e) = "dhalt" —
state '(e) = "dstop":

state (e) = "up" V state (e) = "uphalt" —
state ‘(e) = "upstop”:

state (e) = "down" — (Motion "down(e))OFF:;

state (e) = "up” — (Motion “up(e))OFF;

(Alarm (e))ON:

(Door “open (e))ON:

39

EVENT Reactivare elevator(e):

MAPCONDITIONS— state ‘(e) = "upstop” — state (e) = "uphalt”;
state'(e) = "dstop” — state (e) = "dhalt”;
SIGCONDITIONS— (Alarm (e))OFF:

(Enter "halt (e))ON:
ENDEVENT;

INTERNAL EVENT Idle elevator(e);

MAPCONDITIONS— state ‘(e) = "idle":
Allop (A {not(agenda ‘(e , x))1 lowfloor (e)< x Shighfloor (e)}):
SIGCONDITIONS—- Allop (A {(Light (e . x))OFF | lowfloor (e)Sx Shighfloor (e)}):
(Door “open (e))OFF;
ENDEVENT:

INTERNAL EVENT Move idle(e; floor: F);
(* Initiated by the dispatcher. *)

MAPCONDITIONS— agenda ‘(e , floor) = true;
floor > floor “now (e) — state ‘(e) = "uphalt”,
floor < floor “now (e) — state ‘(e) = "dhalt”,
SIGCONDITIONS—- (Set “in"motion (e))JON;
ENDEVENT:

EVENT Update clock(e):

(* Initiated by breaking a light beam across the door of the elevator or by
some similar device. *)

MAPCONDITIONS— clock (e) = T.now ;
ENDEVENT;

EVENT Open door(e):
(* This event is required for people to get out who somehow find themselves in

an idle elevator. Raising the flag Process halt ensures that the opened door
will ultimately close again. *)

40

MAPCONDITIONS— clock ‘(e) = T-now :
SIGCONDITIONS— (Door “open (¢))ON:
(Process “halt (e))ON;
ENDEVENT:

TRANSACTION;
@ (T.now): ON(Activate “elevator (¢ DOFF: Activate “elevator (e):

ENDTRANSACTION:

TRANSACTION;
@ (T.now): ON(Add “10 agenda (e . floor))OFF: Add “to"agenda (e . floor);

ENDTRANSACTION;

TRANSACTION;
@ (T.now): ON(Move “idle (e . floor))OFF: Move “idle (e, floor);

ENDTRANSACTION;

TRANSACTION;
@ (T .now): ON(Enter "halt (e))OFF: Enter “halt (e):

ENDTRANSACTION;

TRANSACTION;
(* The delay is to give passengers lime 10 press destination buttons. *)
@ (clock (e)+delay (e)): ON(Process “halt (e))OFF: Process “halt (e):

ENDTRANSACTION;

TRANSACTION;
@ (T now): ON(Set “in"motion (e))OFF: Set “in"motion (e):

ENDTRANSACTION;

41

TRANSACTION;

‘@ (T.now): ON(Next ~ floor “sensor (e))OFF: Passing “sensor (e):

ENDTRANSACTION:

TRANSACTION:
@ (T.now): ON(1dle "elevaior (¢))OFF: Idle "elevator (e):
ENDTRANSACTION;

ENDSEGMENT;

42

Support Materiais Formal Specification of Software

® The Specification Process

Alfs Berztiss
University of Pittsburgh

The process of creating specifications, especially in the set-function methodology, is described. Note that the
elevator problem (previous section) is discussed at the end of this section.

SEI-SM-8-1.0 Dratt For Public Review 43

THE SPECIFICATION PROCESS

SEGMENTATION OF SF SPECIFICATIONS

The initial 1axk m the specification process is 1o define the segments. Discussions with
chients and within specification groups establish a common vocabulary. For the most part
data types derive from nouns in the vocabulary, events from verbs. Functions are defined
in anticipation of the queries that will be put 1o the svstem or of the support needs for the
control activities of the system. (The information needed to evaluate preconditions of
events can be regarded as provided by internal queries.) At this stage no thought should be
given 1o responders or signals. Nevertheless, the initial scheme will become modified a few

times.

Aliernatives will have to be weighed one against another. For example, a withdrawal
from an account may be considered as an event that modifies functions belongihg 1o seg-
ment account. Alternatively. withdrawal could itself be a segment. There would still be a
withdrawal event. bul this event would modify functions of segment withdrawal. Of
course. withdrawals also affect balances in accounts. but the balance adjustments can be

accomplished by means of signals that initiate internal events in account.

It is important to realize that there is no "best” solution, although we do recommend
that each segment be identified with a data type. The first factor to affect segmentation is
the client’s viewpoint. If the primary purpose of the banking svstem is to provide informa-
tion regarding accounts, then there may not be a need for a separate withdrawals segment.
But the need may exist if the primary purpose is to control the processing of withdrawals.
In other words. the segmentation should correspond to a partitioning of the system that
seems natural to the client. Therefore it is necessary to hold extensive consultations with

representatives of the client. It is essential that the segment structure be found acceptable

44

by these representatives before further work is undertaken. Unfortunately. a realistic

chient-specifier interaction is difficult to provide for student projects.

Second. segmentation assists in the distribution of labor. If a team of four is to
specifv an elevator controller. then a separation oi the svstem into four equal segments
may be appropriate, but equality (of size or difficulty} of segments is hard te achieve. A
group of four students that worked on the specification of an elevator used segments
get calls (10 collect destination indications from within and calls for service from without
the elevator). add floors (10 set up an agenda). move elevator (10 see to the actual movement
of the elevator. both when it i1s responding to users and when it 1s idle). dispatcher (10
switch agendas), abnormal stop (10 deal with the pressing of the stop button). and

power on"off (1o deal with power failures).

Some of these segments consist merely of events and the responder. which goes against
our earlier recommendation that segments be data tvpes. Although the approach was
justified here. in the long run excessive segmentation causes a heavy traffic of messages
betw een segments. Therefore. after the segments have been developed by members of the
specification team. and the initial design tested by some static analysis technique. such as a
walkthrough, segments should be amalgamated. This is a very simple process in that the
existing messages will still be needed. but they will now be passed along internally between

components of the same segment.

Other important decisions relate 1o type hierarchies. How should the ISA facility be
used? When is it better to have a hierarchy? When is it betler to have independent seg-
ments? For a while we toyed with the idea that the titles and copies of the library system
should somehow be made into a hierarchy. but finally rejected the idea as counterintuitive.
The statement "X ISA Y" only makes sense for X a subset of }. Thus. in the boat example,
the set of boats in the system is a proper subset of all objects available for hire, and this set
of boats is also a subset of all water vehicles. Actually we could have refined the second

subset relation by stating that our set of boats is a subset of the set of all boats. with the

45

latier being declared a subset of all water vehicles.

The set of titles. on the other hand. defines a partition superimposed on the set of
copies. Whereas every boat is a water vehicle, one copy correspunds o one title, and
another copyv corresponds to another title. The ISA should not be used to define aggrega-
uions either. For example. a car may be composed of four wheels. a chassis. etc. This means

neither that "car 1SA wiwe!”, nor that "wheel ISA car”.

Once the precise structure of the segments has been fixed. the pre-, set-. and mapcondi-
tions of the events can be filled in. To avoid oversights. a list of all the functions of the
data tvpe should be consulted whenever a new event is being defined. to check that all
effects of the event are indeed being considered. At this stage the need for additional func-

tions may become felt.

An important tool for identif ving all the objects or entities that are 10 be the concern
of an information-control system. and for relating these entities to each other is Chen’s
Entity-Relationship (E-R) approach. It is primarily a graphical device for displaying a
static model of an enterprise. There are two kind of boxes: rectangles for entity sets. and
diamonds for relationship sets. Boxes are linked bv undirected lines. and the two boxes
linked by a line differ in kind. Further, both entity sets and relationship sets may have
attributes. An attribute of a set is indicated by an ellipse. and there is an arrow from the

box representing the set to the ellipse.

As an illustration we show an E-R diagram for an information system that relates
students. courses. and instructors. There are two relationships. Takes and Gives. The labels
N and M mean that Takes is a many-to-many (N-10-M) relation. and labels N and 1 mean
that Gives is many-to-one from Course 1o Instructor (or one-to-many from [nstructor to
Course). We also show some of the attributes of Course. and an attribute of Gives. The
latter indicates whether a given instructor teaches a given course on a regular basis or under

some special arrangement.

46

Reg-Spec

— PN u) A CEE——
| Student +—\—- Tal\es | Course —‘—-ines >_—1—; Instructor

L_____J \/ - ;

\

. iz
@ Time S €
limit

E-R model of a section of a university information system

The equivalent SF specification consists of three components - Students, Courses. and
Instructors. The Reg/Spec attribute has to be associated either with type Course or type
Instructor. Here it is associated with Instructor. We show here just the three type

specifications.

TYPE Student: S;

FUNCTIONS- takes : S — C —set:

""""" (Functions that are attributes in E—R)

ENDTYPE;

TYPE Course: C;

FUNCTIONS—- roster : C — S-—set: roster (x) =
{y | member (x . takes (y)}
instructor of : C —F:;
locale : C ~— Room ;
meets "at : cC —T;

size limit: CcC —1I;

SRR (Further attribute functions) .

ENDTYPE;

TYPLE Instructor: F:
SECONDARYSETS- Teaching status: TS = {"REG". "SPFC"}:

FUNCTIONS— gives: F — C—set: gives(x) =
{y | instructor "of (y) =x};

status: F XC — TS

""""" (Attribute functions)

ENDTYPE;

The E-R philosophy is to differentiate between relations and attributes. Relations are .
between entities that belong to the E-R model: attributes are maps from an entitv or a rela-
tion 10 a data type that is external to the model. However. with the separation of the
model itself into segments such a distinction becomes rather arbitrary and artificial. Furth-
ermore, the vocabulary is increased unnecessarily. Nevertheless. the development of an E-
R model of an information system is certain 10 contribute 1o a betier understanding of the
interrelation of the elements of the information svstem. and is therefore recommended as a

preliminary to SF specification.
THE DYNAMIC COMPONENT OF SF SPECIFICATIONS

The final stage in SF specification is the addition of the dynamic (or time-dependent.
or control) component. This censists of sigconditions. the responder. and internal events.
In some cases the dynamic component is a fairly minor addition. such as in the library .
example. Surprisingly. in all our experience. the addition of the dvnamic component has
required no or very minor changes to the static part of the specification.

48

We have found state-transition diagrams and Petri nets of great assistance in the writ-
ing of SF specifications. An example of a state-transition diagram has alreadv been given
for the elevator problem. For the boat-hire problem the appropriate state-transition

diagram is as follows:

: - T

A (place-transition) Petri net consists of a digraph and a dynamically changing mark-
ing pattern. The digraph consists of two disjoint sets of nodes. places P and transitions T
and a flow relation F G (PxT){J(IxP). Given transition ¢, the set of places
{pl<p.t >€F}| is the preset of ¢ and the set of places {pi<t,p > €F} is the postset of ¢.
Presets and postsets of places are defined analogously. Places are usually represented by
circles. transitions by bars. Each place has associated with it a class of token tvpes. Tokens
of different types may be distinguished by drawing them in different colors or by use of
different symbols. An initial marking provides each place with zero or more tokens of each
of the types associated with this place. and the net is then in its initial state. The net
changes states by firings. A firing of a transition is enabled if each place in its preset holds
at least one token of each of the types associated with that place. The result of the firing is
twofold. First, for each place in the preset, one token of each of the types associated with
that place is removed. Second. for each place in the postset, a token of each type associated
with this place is added. Tokens may also be added during the running of a Petri-net pro-
cess as inputs. In the examples to be discussed here all tokens will be of the same type.

Note that we shall use Petri nets primarily as a graphical tool. An investigation of the uses

49

of the formal theory underlving Petri nets in the analysis of control svstems is outside our

scope.

Ti: =1
T2: f:=f*k
(O
{

T3: ki=n

T4: n:=n-1
T6: n=0 T5: n>0

PS8 P7

|

!
J

Petri net for the computation of the factorial

Let us start with a very simple computation--the evaluation of facrorial(n)}, where n
is a nonzero integer. Qur first example of a Petri net is for this computation. and it is
shown with its initial marking. Transitions represent steps in the computation. and the

movement of tokens between places sees to it that these computational steps are properly

50

sequenced. If a transition is annotated with a predicate, as TS5 and T6 are in the figure. then
the normal firing rule is augmented with the requirement that the predicate be true. Sup-
pose n = 0. Then T1 and Té6 can fire. When they do. tokens move into P2 and P8, and the
process stops with f = 1 because no further firings can take place. On the other hand., if n is
greater than zero, then T1 fires as before. but now it is T5 that fires at the lower end. This
moves a token into P7, and T3 can fire. Firing of T3 moves tokens into P4 and P35, so that
T2 and T4 can fire next. Note the parallelism: P2, T2, P3. and P4 represent one process, the
building up of the factorial by the multiplication at T2; P5, T4, P6, TS5, and P7 represent
another process, the adjustment of n a1t T4. The point of contact of the two processes is T3,
where the current value of n is assigned to k. An alternative would be to pass the current
value of n in a message from process to process at T3. In any case, the design of the net-

work and the initial marking make sure that the two processes do not get out of step.

T3
O On @r O &)
| T4

Petri net representation of mutual exclusion

Next we consider two processes that are to have access to a particular resource, but
never both at the same time. This is known as murual exclusion. In the figure, let a token in
P2 represent access 1o the resource by process A, and a token in P4 access by process B.
Under the marking as shown, both T1 and T3 are enabled to fire. Suppose T1 fires. This
removes okens from P1 and P3 and places a token in P2. While this token remains in P2,

transition T3 cannot fire, i.e., while there is a token in P2 there cannot be a token in P4, and

51

vice versa.

In the specification of systems that are primarily control svsiems a Petri net may be
used from the very start to define the structure of the system. We show a net that
represents a manufacturing svstem consisting of one producer and two consumers. The
"producer” A consists of places P1. P2. and P3. and transitions T1 and T2 “Consumers” B
and C ha-2 the sume configuration as the producer. For example. the producer could assem-
ble toasters. and the consumers package the toasters. The producer generates at P1 objects,
which are represented by tokens. Firing of T2 sends one token to P2 10 keep the process
going, and another. which represents the generated object. to P3. The generation of an
object is triggered by the placing of a token in D.P1 (an external input), and the objects
finally go to place D.P2. which acts as a buffer. Tokens are taken off D.P2 by either B.T1 or
C.T1. the entry points to the consumer processes. The actual processing occurs at B.P1 and
C.P1. and the finished goods end up in D.P3. via B.P3 or C.P3. The initial marking consists

of one token each at A.P2, B.P2, and C.P2.

The translation of the Petri net into SF is schematic in that we ignore anyvthing to do
with with the data base. i.e.. preconditions, setconditions. and mapconditions. It must be
understood that in SF the time at which a transition fires is explicitly defined. and that an
event triggered by a transition only takes place if its precondilions are satisfied. We let
each of processes A. B, C of the figure be an SI segment. Consider the producer process.
where we assume that the actual time to produce an object is 20 minutes. The schematic
specification of segment A now follows. There signal 7’1 “start is set outside the segment.
and signal Process complete triggers an event outside of segment A. Event A.P3 (and tran-
sition D.T1 appear superfluous). but they are needed to support an SF convention that no
event may be initiated directly from another segment. This contributes to the ease of
developing segments independently of each other. Hence we need a transition within seg-

ment D to initiate D.P2 (transition D.T1). and an event in A that is to trigger this transition

(event A.P3).

52

AT1

APl

AT2

A.P2

A.P3

D.T1

D.P2

Petri net of a manufacturing system

SEGMENT A:
IMPORTED SIGNALS T1 “start :
EXPORTED SIGXNALS Process complete
INTFRNAL EVENT P1:
SIGCONDITIONS— (T2 “trigger JON:
ENDEVENT:
INTERNAL EVENT P2
SIGCONDITIONS— (T'1 trigger JON;
ENDEVENT:
INTERNAL EVENT P3.
SIGCONDITIONS- (Process “complete JON;
ENDEVENT;
TRANSACTION T1:
@ (T~ Now): AND(ON(T1 “start JOFF. ON(T1 “trigger JOFF): P1:
ENDTRANSACTION:
TRANSACTION 72;
@ (T ".Delay (20. T~ .Now)): ON(T2 “trigger JOFF: P2 P3:
ENDTRANSACTION:

ENDSEGMENT:

The delav of 20 minutes represents the time required to produce an object. If signals
are combined by an AND, thev must both be in the ON-state for anything to happen, e.g.. if
T1 start alone is on when T'1 is processed. then I'l “szart does not get turned off. The
specifications of segments B and C have exactly the same form as that of A. The only
difference is in transaction 72 : this transaction is likely 10 have shorter delays in B and C.
The modularization of the system has been carried out in such a way that the specifications
of segments A. B. and C would not have to be changed if they were 1o be used in some

other context. Here they are coordinated by segment D. and a schematic specification of D

54

now follows.

SEGMENT D;
IMPORTED SIGNALS A.Process “complete , B.Process complete . C.Process “complete ;
EXPORTED SIGNALS A.T1 start, BT1 start . C.T1 “start . P3 inventory
EVENT P1;
SIGCONDITIONS—- (A.T1 start)ADD:;
ENDEVENT;
INTERNAL EVENT P2;

SIGCONDITIONS— AND(OFF(B.T1 “start JON, ON(P2 “inventory)OFF);
AND(OFF(C.T1 “start JON, ON(P2 “inventory)OFF);

ENDEVENT:
INTERNAL EVENT P3;
ENDEVENT;
‘ TRANSACTION T1;
@ (7" .Now). BLOCK
ON(A.Process “complete JOFF: (P2 "inventory)ADD;

OR(OFF(B.T1 “start), OFF(C.T1 "start)): P2 :
ENDBLOCK; '

ENDTRANSACTION:
TRANSACTION T2

@ (7" .Now): ON(B.Process "complete YOFF: (P3 “inventory)ADD:;
ENDTRANSACTION:
TRANSACTION T3

@ (T".Now): ON(C.Process "complete YOFF: (P3 "inventory)ADD:
ENDTRANSACTION;

ENDSEGMENT:

A.T1 start . P2 inventory . and P3 inventory differ from other signals. They are

counters rather than flags. An ADD operation increments a count. and also identifies a sig-
nal as a counter. In this context ON(Counter) is true if Counter is non-zero. and
(Counter)OFF decrements Counter. The computation associated with the processing of a sig-
nal, such as ON(P2 “inventory JOFF. must be atomic. Otherwise both the B 71 “start and
C.T1 start of our example could get set when there is only one ilem in the inventory.
Event D.P3 is left totally unspecified. Another process could be fed by it, such as the dis-

tribution of finished products to sales points.

A problem that arises quite frequently has to do with the ISA. Suppose that referees
form a subset of persons (asserted by means of an ISA), individual x is being selected as a
referee, but individual x is not in the set of persons P. One approach is to test for member-
ship of x in P, and simply not to proceed with the referee selection event if the test is not

satisfied.

A better solution is to make referee selection a two-siage process. First test for
membership in P. If the test is passed, proceed with referee selection (as an internal event).
Otherwise raise a signal that prompts an event in the parent segment 1o add x to P. This

event raises a signal that causes x 10 become a referee. The Petri net of this paradigm:

section of
parent
segment

-

56

SPECIFICATION OF THE ELEVATOR

The requirements statement for the problem asks for the specification of a system of
elevators. Initially we hoped to develop two segments--an clevaior segment. and a
dispaicher segment that was 1o decide which elevator was to respond 1o an outside call for
service and was 10 move idie elevators to strategically piched hoiding ficors. But the
“specification” of the dispatcher then encroaches on design. An algorithm has to be selected
that is based on queueing theory and scheduling theory, and the algorithm may have to be
tuned on the basis of simulation experiments. We maintain is that a specification should be
prealgorithmic, but this means that the dispatcher cannot be specified. Of course, if the
requirements actually propose an algorithm, then the specification should reflect the charac-
teristics of the algorithm. This was the case with the two-way merge. In the present
instance. if an algorithm had been supplied for the dispatcher. then we could have written a

specification, but we could not be expected to devise the algorithm.

As regards the elevator segment, we realized from the \‘e‘r)‘ start that we should con-
sider state transitions. However, at first we had only the states idle. halt. and move. It did
not take long to realize that the halt state could not cope with emergency stops. and a
separate stop stale was added. However, a whole dav of false starts was wa'sled before the
realization that states move. halt, and stop had to be split on the basis of whether the eleva-

lor movement is up or down.

This put us in a position to define external events. but when it came to the linking of
events into processes, and the definition of internal events (eight of a total of fourteen), the
interrelation of events and transactions was becoming so tangled that we had no overview
of the total system. The Petri net representation showed below established the overview.
In the diagram of the net we use abbreviations. as listed in the table on the page that fol-

lows the diagram of the net.

57

58

NFS

ONONONS

Petri net of an elevator

IE

AE - Activate elevator PB - Press button

AtoA- Add tc agenda PH - Process halt
EH - Enter halr PS - Passing sensor
IE - Idle elevaior RE - Reactivate elevator
Init - [nitialize elevator SIM - Set"in motion
MI- AMoveTidle Stop - Siop elevaror
NFS - Next floor sensor UC- Update clock

OD - Open door

As before. places stand for events, transitions for transactions. The transitions carry labels
that refer to the signals processed by the transactions that these transitions represent. The
broader bars indicate transactions that are initiated from the outside. The five place sym-
bols that are not part of the main net represent events that do not directly cause other

events; one of these. event Add to agenda, is initiated by the dispatcher.
SPECIFICATION OF DATA TRANSFORMERS

Data flow diagrams can assist in the specification of déta transformers. These
diagrams form the basis of the "structured analysis" approach to development of systems.
A data flow diagram is built up of components of four tvpes: (1) Sources and sinks, which
are external agencies that send data into the svstem or receive data from the svstem. They
are represented by boxes. (2) Processes, which are represented by circles. (3) Files or data
bases. represented by two parallel lines. (4) Data flows. which are represented by arcs link-

ing pairs of objects of the first three types.

An information-control system is based on a centralized data base, and all "flow"
relates just to the updating and interrogation of this data base. Consequently data flow
diagrams are of little use in the specification of information-control systems. But the situa-

tion is quite different with data transformers. Here actual data objects are moved from

59

process 10 process. and each process carries out some transformation of these objects.

Our example is the data flow diagram of a spelling checker. A text file enters the sys-
tem and the texi is split into words at node SW. The word list that is the result of this
operation is sorted. and process RD removes duplicates from the sorted list. At SD (Sub-
tract Dictionary) this reduced list is compared against a stored dictionary. and words not

found in the dictionary are presented to the user.

e e =)
NS
U
S Reduced
E file
R
Words not in @jD
dictionary ’
Dictionary

Data flow in a spelling checker

Actually. with this diagram we have moved well out of specifications and into
software design. The indication that the word list produced from the-text file should be
sorted. and duplicates removed from it, is the selection of an algorithm. A specification
should not go that far. Instead, for a specification we should regard the word list (call it
W) and the dictionary (D) as sets, and the errata list is then the setvdiﬁerence W-D. How

the set difference is obtained should be of no concern to the writer of the specifications.

60

Support Materials Formal Specification of Software

® Formal Specification Courses

Alfs Berztiss
University of Pittsburgh

Details of course organization are described. Examples are drawn from experiences at the University of Pitts-
burgh. Suggestions for exercises and projects are included.

SEI-SM-8-1.0 Draft For Public Review 61

FORMAL SPECIFICATION COURSES

COURSE OUTLINES

These outlines relate to courses dealing with formal specification offered by the
Department of Computer Science. University of Pittsburgh. ,Course CS135 is taken by
undergraduates. usually in their senior year. The prerequisite structure ensures that they
have completed at least five computer science courses. CS231A is a graduate course, where
the only prerequisite is admission to graduate study in computer science. At the University
of Pittsburgh this essentially means that the student has an undergraduate major in com-

puter science. Each lecture lasts 80 minutes.

CS135- SOFTW ARE SYSTEMS DESIGN Fall 1987/8

1 (Sep. 2): Introduction 10 course

2 (Sep. 9): Software life cvcle

3 (Sep.14): Components of computations

4 (Sep.16): Principles of modularization

5 (Sep.21): The SF (set-function) methodology
6 (Sep.23): Specification: Boat hire

7 (Sep.28): Specification: A library system

& (Sep.30): Initial discussion of the term project
9 (Oct. 5): Petri nets |

10 (Oct. 7): Petri nets 11

11 (Oct.12): Specification: An elevator

12 (Oct.14): Specification: A text formatter

13(0ct.19):

(Oct.21):

14 (Oct.26):

Testing of specifications
MIDTERM EXAMINATION (open book)

Site-related aspects of the SF methodology

15 (Oct.28): Property inheritance and knowledge representation
16 (Nov. 2): Review of the SF methodology

17 (Nov. 4): More on testing

18 (Nov. 9): More on the project

19 (Nov.11): Errors. uncertainties. exceptions

20 (Nov.16): Entity-relationship model

62

21AN-.18): Abstract data tvpes |

22 (No..23): Abstract data types |l

23 {N:..30): Data types and generators
220Dl 20 Programming with generators
25D TN From specifications to software |
20 Ll 9 From specifications to software Il

"Dec.17): FINAL EXAMINATION (open bock) 10:00-11:20

CS231A- SOFTWARE ENGINEERING: SPECIFICATION AND DESIGN Winter 1987/8

1 (Jan 73 Introduction to software engineering
2 (Jan.12): Software life cycle
3 (Jan.14): Components of computations
4 jar.19): Abstract data types: introduction
T Jes 21): Hierarchies and modules
6 tJar. 26): The SF (set-function) methodology
7 (Jan.28): Specification: bank accounts
8 (Fet. 2): Specification: a library system
“(Fe- 4): Discussion of the term project
1+ (Fez. 9): Petri nets: introduction
11 (Feb.11): Petri nets and SF specification
12 (Feb.16): Petri nets in process analysis
13 (Feb.18): Specification: an elevator
14 (Feb.23): Testing of specifications
15 (Feb.25): Abstract data tvpes |
16 (Mar. 1) Abstract data types II
(Mar. 3): MIDTERM EXAMINATION (open book)

17 (Mzr.15):
18 (Ma=17):
19 (Mz-.22):
20 (Mar.24):
21 (Mar.29):
22 (Mar.31):

23 (Apr. S): The Z specification language

24 (Apr. 7): Z and specification of processes

25 (Apr.12): The PAISLey and MSG.84 methodologies

26 (Apr.14): The Vienna Development \ethod in specification

27 (Apr.19): Sites and knowledge representation in SF

28 (Apr.21): From specifications t¢ software by transformations: |
29 (Apr.26): From specifications to software by transformations I

Review of the SF methodology

Specifications: a text formatter and two-way merge
Data types and generators

Programming with generators

The Larch approach to specifications

Larch and CLU

(Apr.28): FINAL EXAMINATION (open book)

63

PRACTICAL WORK

A course dealing with specification should be centered on a major group project, but
several individual exercises are an essential preliminary to the group project. First. this
allows the instructor to find out which specification principles and methodologies the
instructor had not fullyv explained. Second. misconceptions by individual students can be
corrected. Third. the instructor comes to understand the capabilities of the students. On an
individual basis this helps during the selection of teams for the group project. More

broadly. the level of difficulty of a project can be matched to the experience of the class.

As regards the group project. we have genex"ally started out with four to five students
to a specification team. A smaller group may become ineffective if a member drops out or
fails to contribute adequately, and the duration of projects is too short to justify larger
groups. Our standard practice has been to assign students to groups in alphabetical order.
However, if chance puts too many weaker students in a group. some switching should be
done. Otherwise the group may not get going. For greater realism. we intend 10 experiment
with the transfer of stronger students from one group to another (that works on a different

project) half way through the exercise.

Our grading scheme has been to derive 50% of the total grade from examinations and
50% from individual assignments and the project. but at limes we have dispensed with the
midlerm examination. in which case the project has carried 50%. assignments 25%. final

examination 25%.

A project is first given an overal] grade, for example along the lines

Quality of the specification - 20 points
Documentation - 10 points

Project log - 5 points

Validation (walkthroughs) - 10 points
General presentation - 5 points

The overall grade mav then be reduced (sometimes raised) for individual members of the

team according to three criteria. First. each student is required to do a confidential rating of

64

all members of his or her team by indicating the percentage of the total effort contributed
by each individual. Second. each group keeps a project log. The log provides a record of
attendance at meetings and of individual assignments. Third. the quality of the work
assigned to an individual is compared to the quality of the work by others in the group.
However, group interaction tends o smooth out differences in quality of a specification, i.e.,
quality tends to be uniform across an entire specification document. Indeed, students work-
ing as a group influence each other in such a way that all members contribute equally, with
the weaker students investing more time in the project. The exceptions are few, and the log
and the student ratings identify them very well (a lowered score for just six of 42 students

is typical).
A LOGBOOK: ELEVATOR SPECIFICATION

Meeting # 1
Feb. 2, 1987
6:30 Hillman Lib.

Absent: Nobody

Accomplished: Group members simply got acquainted and discussed
possible meeting times. Monday evenings were discovered to be
the best time to meet, and it was agreed upon by all members.

Meeting # 2
Feb 19, 1987
6:00 Hillman Lib.

Absent: Nobody

Accomplished: Basic setup of functional requirements was es-
tablished. It was decided that two segments would be required;
an operator, and a dispatcher. The imported types and signals
were agreed upon and written. Each menber was then assigned
specific events and everybody agreed to write one version of the
event Next Move.

65

66

Channarasappa: Add_Call_To_Agenda
Move_Elevator

Correa: Delete_Floor_From_Agenda
Halt_At_A Floor

Eaton: Move_Elevator
Stop_At_A Floor

Fetsko: Add_Select_Floor_To_Agenda
Emergency_Stop

Meeting # 3
Feb. 23, 1987
6:00 Hillman Lib.

Absent: Nobody

Accomplished: Basic structure of operator and dispatcher put
together. The assigned events were reworked at meeting so they
all used similar terms and notations. The event Next_ Move was
assigned to all group members again since no workable solution
could be found. The two main types: Elevator and Agenda, were
then written and agreed upon.

Meeting # 4
Feb. 24, 1987
3:30 Alumni Lib.

Absent: Nobody

Accomplished: As a group effort, an ASM chart was setup for the
event Next Move. From this chart, we were able to find the signal
and map conditions necessary to have a complete working version.
Once written, The event was vigorously tested and subsequently
found to be satisfactory.

‘Meeting # 5
March 2, 1987
6:00 Hillman Lib.

Absent: Nobody

Accomplished: All the events were tied together after some
editions to them. The functions of each segment type were
then written. And finally, a rough version of the functional
requirements was completed. Each member was then assigned to
type in his or her events into one account or file.

Meeting # 6
March 4, 1987
6:00 Hillman Lib.

Absent: Nobody
Accomplished: This meeting was more or less an initial debugging
session. As a result, errors were detected in many areas of the

requirements and fixed by the group.

Errors detected in:

Dispatcher: . imported signals and types
Type Agenda: functions
Add_Select_Floor_To_Agenda: mapconditions

Next Move: mapconditions

Operator: imported signals

Type Elevator: functions

Move_Elevator: map conditions

Halt_At_A Floor: signal conditions

67

68

Meeting # 7
March 9, 1987
6:00 Forbes Quad.

Absent: Nobody

Accomplished: A format for the documentation was setup and
agreed upon. Each member was then assigned to write an equal
portion of it and type it in.

Channarasappa: Segment Operator
Type Elevator
Event Stop_At A Floor
Halt_At_A Floor

Correa: Segment Dispatcher
Event Add_Select_Floor_To_Agenda
Event Move_Elevator
Event Emergency_stop

Eaton: Event Add_Call_To_Agenda
Event Delete Floor_From_Agenda
Event Stop_Release

Fetsko: Introduction
Event Next Move
Type Agenda

Meeting # 8 .
March 16, 1987
6:00 Hillman Lib.

Absent: Nobody
Accomplished: Material was passed out for walkthrough. A date,

time, and location was setup at the Hillman Library on March 18,
1987 at 4:00 PM.

Meeting # 9

March 18, 1987

4:00 Hillman Lib.

Absent: Nobody

Accomplished: The walkthrough. Errors were detected in the event
Emergency_Stop which required the addition of the event E_Stop.
Errors were also detected in the segment operator.

Note: These errors were not fixed until the walkthrough was
completed.

Meeting # 10
March 21, 1987
6:00 Hillman Lib.
Absent: Nobody

Accomplished: The final version was reviewed and accepted by all
the group members. PROJECT COMPLETE!

FROM OTHER LOGBOOKS

Specification groups working on a student regisiration system were encouraged 1o
interview university staff actually concerned with registration before requirements were
defined. Only one member of the team was to meet with each official. Members of one
group interviewed three university officials: the Director of the Undergraduate Programs
Office in the Department of Computer Science (4 pages in the log). an official in Student
Business Services (another 4 pages in the log). and a student advisor in the College of Gen-
eral Studies (2 pages in the log). This group maintained three logs: a chronological log, a
walkthrough log. and a communications log. The latter contains the detailed accounts of

the information elicited in the interviews.

One group devised a form that was used at meetings of the group. The set of forms

for all meetings was their log. A sample from this log is the next page.

69

LOG for Group 7 Page : T

Cheryl Mester, David Miller, Sandra Mueller and Terry Ohm

Members :

Date : Mﬂ\'\ / Time : 3.0

Who attended : Mﬂ_%_gm\c\%—i.&z ﬁ\\% - C\eo m/\\

Topics Discussed : Chan ‘" \

haX = need of Qmmu__‘g_simﬁnr\ k_USL* (oc ks,

Controversu aver specifiiabon of showeg dasses, AL
d o

Aeze Lphion

Work completed & by Whom :

Closs xr\.%crm*.\\c;_m_é;_cz(;gica\tm_"cl -‘Qf‘fq Ohen

Locotiae b = nec Gere von bu 4 \mer\A \ s"\c' .YeA
=
/\’\’\ \‘3'@5: ('\\'\\ r\f L\‘\(Vv\c \"M \Sowé M\\N"

v

\\\A\&m\)\) Cw\c& NQ\\ \0\-4 Acu\c\SU\ “\\K)LQ,\\Q <

Work assigned & to whom :

S he} Ap \Jr\emx MeEs\e +

H& SEVASANN /"\ La) C\\\
PR Ao~ As \(hu O'nen

Fe_\,\ AR J\T Qf\
& Y SAO *C_ BC«\,\(\ M\\\P‘\

\‘vag\.:y\ C)\’ r"\(&‘r\ ;\-.'-’fui\ f'mr\ by

R £ SASVOWN C)ST D ‘A\f\({\'\(’\\ A ﬁ &\,\&\r\ N\,\P\L@‘V

Other notes :

70

EXERCISES AND PROJECTS

Small SF specifications. The first exercise can be the grade record for a class. Next is
an appointments calendar with reminders. From this one can advance to an automobile
maintenance data base that keeps irack of all maintenance act:vities and reminds the driver
¢i periodic checks. At about the same level of difficuity is a subscription system that
accepls subscriptions for a journal, determines when renewal notices and follow-up notices

are 1o be sent out, and takes care of explicit and implicit cancellations.

Extension of the elevator specification. The elevator specification given as an example
of the use of SF can be refined. Thus, the case can be examined in which the agenda of an
elevator is empty, but nullweight returns false. This sensor can actually be replaced by a
real-valued sensor that indicates the weight of the contents of the elevator. Overloading of
the elevator can then also be dealt with. A further extension should be provided to take
care of recovery of the elevator from a power failure. Extend the given specification, but
beware of "goldplating”. namely a situation in which the svsiem becomes too elaborate. For
example, a person who has pressed a wrong button could wish for a means of cancelling
this action. However, pressing all butions is recommended as a countermeasure 10 being
attacked on an elevator. and a cancelling feature would reduce the effectiveness of this

measure.

Formal-wear-hire and dry-cleaning establishment. An establishment consists of a
formal-wear-hire section and a laundryv and drv-cleaning section. The formal-wear-hire
section hires out bridal gowns, ball gowns, tuxedos. and similar garments. The hiring
charge for each item is composed of a fixed charge and a variable charge determined by the
length of the period of hire. The total variable charge for a hire transaction. which may
involve several garments, depends also on the total fixed charge--the variable charge is
reduced by a percentage proportional to the amount of the total fixed charge. All garments
go to the laundry and drv-cleaning section on return, but this section also launders and

dry-cleans for the general public. Develop an SF specification of this establishment. In

71

particular. determine how much (if anvthing) this specification has in common with the
boat-hire specification. and devise an approach that takes advantage of any commonality.

i.e., examine 10 what extent components of an SF specification can be made reusable.

Traffic lights. Traffic lights X go through a sequence green. amber. red. green,
The duration of the amber period is fixed, but the durations of the green and red periods are
adjustable parameters. Lights Y are driven by lights X. The duration of the amber period
is the same as for lights X, and there is a fixed overlap period at which both sets of lights
show red. Write an SF specification for this system. Suppose lights Z are now installed.
They are to be driven by lights X and are to be synchronized with them so that the green.
amber, and red periods have the same durations for both lights. but the sequence for Z lags
behind the sequence for X by some adjustable time interval. Does this modification need to

cause any changes to the segment that controls lights X?

Automobile cruise control. This system is to maintain an automobile at a fixed cruising

speed. A mechanism monitors the current speed of the car and adjusts the throttle setting

72

whenever the current speed has deviated too far from the selected cruising speed. There are
three switches. The cruise control on/off switch engages or disengages the system. Cruise
control may only be engaged when the engine is on, and it automatically disengages when
the engine goes off. When the system is engaged. a cruising speed is selected by bringing the
car 1o this speed and pressing a "select” button. Application of brakes cuts out cruise con-
trol, and the speed has 1o be controlled manually. Now, if the "select” button is pressed, the
actual current speed becomes the new cruise speed, but if a "resume” button is pressed, then
the system reverts to the cruising speed in effect before braking. Acceleration also overrides
cruise control. but in this case resumption of the cruising speed is automatic. However,
"select” can again be used to select a new cruising speed. Write a formal specification for

this system.

Coin-operated luggage lockers. The basic usage of the lockers is as follows: (1) luggage
is deposited in an unoccupied locker, and the door of the locker is closed; (2) an appropriate
payment is made, the door is locked. and the user gets a key; (3) the key unlocks the locker
door at any time within the next 24 hours. say, and the locker then reverts 10 unoccupied
status. Many variants of this basic pattern exist. For example, in some French railway sta-
tions lockers come in sets of six. each set being provided with just one control mechanism.
After the luggage has been deposited in an unoccupied locker and the door closed. ‘;urning of
the door handle causes the mechanism to display the amount of money to be deposited. As
coins are dropped in, the display shows how much remains to be paid. Hire is for 48 hours,
and there is a return of change in case of overpa_\'mer?t. On receipt of payment the mechan-
ism locks the door, prints the identifier of the locker and a numerical lock code on a slip of
paper. and outputs this slip of paper. The door is unlocked by input of the lock code from
a small keyboard that is part of the control mechanism. Note that during the time between
the turning of the door handle and receipt of the lock code it should not be possible to turn
the other five door handles. Hence it is essential that a transaction be terminated whenever

this time interval exceeds a limit. Write a specification for this system. Write it in such a

73

way that the svstem can be easily converted to variable hiring times. Under this variant,
as coins are dropped in. the display shows the length of time that the pay'ment has bought

this far.

Studens registration. An SF specification of a student registration system is an open-
ended project. It can be made as modest or as elaborate as time permits. The students

should themselves decide what to include in their systems.

Merge of sorted lists. Write a specification for a data transformer that generates a

sorted list from an input of two sorted lists.

The n-queens problem. Consider the problem of placing n queens on an n X n chess

board so that they do not attack each other. The solution is a Boolean function Q.

g: 1l.n x1.n — Boolean ,

such that Q(i, j) is true when square (i. j) holds a queen. and Q(i. j) is false when square (i.
j) does not hold a queen. The specification is to be a predicate N queens(n) that is true for
every Q that solves the problem and false otherwise. (The implementation consists of

finding actual functions Q that make N queens true.)

Solution:

N “queens (n) =
Allop (N]
Allop(V: {Q . j)
A Allop (A {not(Q(s. jN11Ss Si—=1Vi+1<5<n})
A Allop (A {not(Q G e N11<e €j=1V j+1<r <n})
N Allop(AN:{s+t=i+jVs—t=i—j — not(Q(s,1))
| I€s Si=1ViH1$sSa)AN S <=1V j+1<r €n)Y)
1< <n})
| 1€i <n});

A spelling checker. Using the discussion of a spelling checker given on p.54 as a guide,

develop predicative specifications of the components of the spelling checker.

74

Add:itional specification problems. Three interesting system descriptions that can be
converled into formal specifications are given in the literature. Theyv are a package routing
svetem [Swartout and Balzer Comm CACM 25 (1982). 435-440]. a telephone dialing system
[Dasarathy. JEEE TransSoftware Eng SE-11 (1985), 80-86]. and a furnace controller
{From the problem set in Froc. 4l International Workshop on Software Spacification and

Design. 1987 (Harandi. ed. b}

75

UNLIMITED, UNCLASSIFIED

ECURITY CLASSIFIZATION OF T+IS PAGE

REPORT DOCUMENTATION PAGE

.R(FQRY SECURITY CLASSIFICATION

10. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
20. SECURITY CLASSIFICATION AUTHORITY _ - J DISTRIBUTION/AVAILABILITY OF REPORT
N/A APPROVED FOR PUBLIC RELEASE
15 OECLASSIFICATION/DOWNGRAGING SCHEDULE DISTRIBUTION UNLIMITED
N/A

4 PEAFORMING ORGANIZATION REPORT NUMBERI(S)

SEI-SM-8-1.0

5. MONITORING ORGANIZATION RCPORT NUMBER(S)

6s. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INST.

b OFFICE SYMBOL
(Il applicadle)
SEI

7a NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c. ADORESS (City, State and Z1P Code)

CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

75. ADORESS (City, State and ZIP Code)

ESD/AVS

HANSCOM AIR FORCE BASE, MA 01731

8b. OFFICE SYMBOL
(If spplicable)

ESD/ AVS

8s. NAME OF FUNOING/SPONSORING
ORGANIZATION

SEI JOINT PROG®AM OFFICE

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003

Bc. AODORESS (City. State and ZIP Code)
CARNEGIE MELLON UNIVERSITY

PITTSBURGH, PA 15213

10. SOURCE OF FUNDING NOS.

1. TITLE (Include Securnty Clossification)

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
63752F N/A N/A N/A

.iormal Specification of Software

ERSONAL AUTHOAS)
Aifs Berztiss, University of Pittsburgh

13a TYPE OF REPORT 130, TIME COVERED

1S PAGE COUNT
75

14. OATE OF REPQRAT (Yr, Mo.. Dey)

PINAL FAOM TO October 1987
16. SUPPLEMENTARAY NOTATION
(%2 COSAT!I COOES 18 SUBJECT TERMS (Continue on reverse if necessary end identifly by bdlock aumber)
FrELD GROUP sSus GA formal specification verification

software specification

formal method

19. ABSTRACYT (Continue on reverse if necessary end 1dentify by dlock number;

These materials support the SEI curriculum module SEI-CM~8 "Formal Specificatiomn

of Software."

0O OISTRIBUTION/AVAILABILITY OF ABSTRACT

INCLASSIFIEO/UNLIMITED §J same as aer. O oTicusers (3

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION

2. NAME OF RESPQONSIBLE INOIVIDUAL 225 TELEPHONE NUMBER 22¢. OF FICE SYMBOL
nelude A
JOHN S. HERMAN, Capt, USAF tInel d: ree Code) ESD/AVS
412 268-7630 (SEI JPO)

DLANAL 1432 01 ADOY P AR IV VPV -2 W a0

e IIATR T ALY e aaszon -

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Maellon University under contract with the United States Depantment of Defense.

The SEI Software Engineering Curriculum Project is developing a wide range of materials 1o support software engineering
aducation. A curriculum module (CM) identities and outlines the content of a specific topic area, and is intended 10 be
used by an instructor in designing a course. A support matenals package (SM) contains matarials related to a module
that may be helpful in teaching a course. An educational matenals package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course

designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and govarnment
communities. The use of these materials in a course does not in any way conslitute an endorsemant of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

Permission to make copies o darivative works of SEI curriculum modules, support materials, and educational materials is
granted, without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that all copies and derivative works cite the original document by name, author's name, and document
number and give notice that the copying is by permission of Carnegie Mallon University.

Commaents on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent 1o education@sei.cmu.edu on the Internet.

Curriculum Moduies (* Support Materials avaiiable) Educational Materials

CM-1 [superseded by CM-19] EM-1 Software Maintenance Exercises for a Software
CM-2 Introduction 10 Software Design Engineering Project Course

CM-3 The Soware Technical Review Process® EM-2 g:e lnpnt'éﬁ::pdu: An Artifact for Software
CM-4 Software Configuration Management® neern Bon .)

CM-S Information Protection EM3 E:m Computer Programs: Instructor's Guide and

CM-& Software Safety

CM-7 Assurance of Software Quality

CM-8 Formal Specification of Software*

CM-9 Unit Testing and Analysis

CM-10 Modeis of Software Evoluvtion: Life Cycle and Process

CM-11 Software Specifications: A Framework

CM-12 Sohware Metrics

CM-13 Inroduction 1o Soltware Verification and Validation

CM-14 intsfleciual Property Protection ior Software

CM-1S Software Development and Licensing Contracts

CM-16 Sohware Development Using VOM

CM-17 Usaer Interface Development®

CM-18 [superseded by CM-23)

CM-19 Software Requirements

CM-20 Formal Verification of Programs

CM-21 Sohware Project Management

CM-22 Software Design Methods for Real-Time Systems*

CM-23 Technical Writing for Sohware Engineers

CM-24 Concepts of Concurrent Programming

CM-28 Language and System Support for Concurrent
Programming’

CM-26 Understanding Program Dependencies

